FLAVONOLS OF PULICARIA ARABICA

SABRY I. EL-NEGOUMY, RAGAA M. A. MANSOUR and NABIEL A. M. SALEH*

National Research Centre, El-Dokki, Cairo, Egypt

(Received 26 May 1981)

Key Word Index—Pulicaria arabica; Inuleae; Compositae; quercetin glycosides; quercetagetin methyl ethers.

Abstract—Three quercetagetin methyl ethers, quercetin 3-glucoside, quercetin 3-glucuronide and a sulphated flavonoid were identified in leaves and flowers of *Pulicaria arabica*.

INTRODUCTION

Pulicaria is in the tribe Inuleae, family Compositae. The Compositae is rich with flavonoids [1], particularly highly methylated ethers [2-5]. Pulicaria dysenterica Gaertner flowers are reported to contain quercetagetin 3,7,4'-trimethyl ether as well as kaempferol 3-glucoside [6]. Furthermore, the presence of a sulphated 6-hydroxyflavone was detected in P. burchardii Hutch [1].

RESULTS AND DISCUSSION

In the present report the flavonoids of Pulicaria

arabica (L.) Cass. were studied. Three quercetagetin methyl ethers were isolated and identified along with quercetin 3-glucoside, quercetin 3-glucuronide and traces of a sulphated flavonoid (which appears to be a 6-substituted flavonoid). All flavonoids were detected in the leaves as well as the flowers. Quercetin 3-glucoside and 3-glucuronide were identified through standard methods of identification and comparison with authentic samples.

The three quercetagetin methyl ethers were identified as quercetagetin 3,7-dimethyl ether, 3,5,7-trimethyl ether and 3,5,7,3'-tetramethyl ether. The two latter methyl ethers are not previously reported as natural products.

Table 1. Chromatographic properties, UV and MS data of quercetagetin methyl ethers of Pulicaria arabica

	Quercetagetin- 3,7-dimethyl ether	Quercetagetin- 3,5,7-trimethyl ether	Quercetagetin- 3,5,7,3'-tetramethyl ether
R _f values*			
BAW	0.57	0.57	0.65
50% HOAc	0.45	0.53	0.64
PhOH	0.70	0.83	0.86
TLC	0.45	0.54	0.64
Colour			
UV	d.purple	fluorescent	fluorescent
		white	white
$+NH_3$	greenish purple	yellow	yellow
UV data			
MeOH	238, 257, 281, 348	255,† 273, 337	256,† 272, 338
NaOMe	270, 396	258, 296,† 376	257, 289, 383
AlCl ₃	278, 302,† 346,† 433	264, 307,† 362	270, 342
AlCl ₃ -HCl	242, 267, 294, 380	254,† 274, 303,† 340	272, 338
NaOAc	258, 282, 352, 396†	256, 274,† 350, 376†	256,† 272, 353, 382†
NaOAc-H ₃ BO ₃	266, 284, 363	256,† 349	256,† 272, 342
MS data			
\mathbf{M}^+	346 (85)	_	374 (100)
M-1	345 (100)		373 (80)
M - 43	303 (20)		331 (32)
(-Me-CO)			
\mathbf{B}_{2}^{+}	137 (59)		151 (80)
$B_2^{+}-28$	109 (45)	_	123 (71)
(-CO)			

^{*}BAW = n-BuOH-HOAc-H₂O (4:1:5). PhOH = PhOH-H₂O (4:1). TLC = C_6H_6 -pyridine-formic acid (36:9:5) Si gel.

^{*}To whom all correspondence should be sent.

[†]Shoulder.

Short Reports

Ouercetagetin 3.7-dimethyl ether. This compound on demethylation with pyridinium hydrochloride gave rise to quercetagetin. After 5 min from the commencement of the reaction, an intermediate was observed which showed chromatographic properties of a 7-methyl ether. (R_f values of quercetagetin and its 7-methyl ether in BAW: 30, 37; 50% HOAc: 16, 22; PhOH: 10, 20 respectively.) The mass spectrum gave a molecular ion at m/z = 346, consistent with a hexaoxygenated flavonoid with two O-methyl groups, and a comparable peak at 345 for the expected loss of a proton from the 6-hydroxyl group [7]. The B-ring ion B_2^+ (m/z 137) indicated a free 3',4'-oxygenated pattern. UV spectral data (Table 1) indicated that this compound was 3-O-substituted (Band I at 348 nm and bathochromic shift with AlCl3-HCl only 32 nm) and possessed a 3',4'-ortho-dihydroxyl system (hypsochromic shift of 53 nm in Band I between AlCl₃ and AlCl₃-HCl and a 15-nm Band I bathochromic shift in NaOAc-H₃BO₃) and that it lacked a free 7-hydroxyl group (no Band II NaOAc bathchromic shift, and absence of a Band III (ca 325 nm) absorption in NaOMe). These data are identical for that recorded in the literature for quercetagetin 3,7-dimethyl ether [8].

Quercetagetin 3,5,7-trimethyl ether. This compound on standing overnight in Et₂O-dry AlCl₃ at room temperature gave rise to quercetagetin 3,7-dimethyl ether. Complete demethylation with pyridinium hydrochloride afforded quercetagetin. UV spectral data (Table 1) indicated that this compound was substituted at positions 3 and 5 (no bathochromic shift of Band I with AlCl₃-HCl), possessed a 3'4'-ortho-dihydroxyl system (hypsochromic shift of 22 nm in Band I between AlCl₃ and AlCl₃-HCl and a 12 nm Band I bathochromic shift in NaOAc-H₃BO₃) and that it lacked a free 7-hydroxyl group (no Band II NaOAc bathochromic shift, and absence of a Band III absorption in NaOMe).

Quercetagetin 3,5,7,3'-tetramethyl ether. This compound gave quercetagetin on demethylation with pyridinium hydrochloride. The mass spectrum gave a molecular ion at m/z = 374, consistent with a hexa-oxygenated flavonoid with four O-methyl groups, and a comparable peak at 373 for the expected loss of a proton from the 6-hydroxyl group [7]. The B-ring ion B_2^+ (m/z 151) indicated that either 3' or 4' was substituted. UV spectral data (Table 1) indicated that this

compound was substituted at positions 3 and 5 (no bathochromic shift of Band I with AlCl₃-HCl), is substituted in either 3' or 4' (no shifts of Band I AlCl₃-HCl or NaOAc-H₃BO₃), lacked a free 7-hydroxyl group (no Band II NaOAc bathochromic shift, and absence of a Band III absorption in NaOMe) and possessed a 4'-hydroxyl group (Band I NaOMe bathochromic shift of 45 nm and increase in intensity compared with Band I in MeOH).

EXPERIMENTAL

Material. Pulicaria arabica (L.) Cass. was collected 1 km west of Koum-Ushim, Fayoum. The plant was identified by Professor M. N. El-Hadidi, Department of Botany, Cairo University. Voucher specimens are deposited at the Herbarium, NRC.

Methods. Air-dried leaves and flowers were extracted with 70% EtOH. Fractionation was carried out using elution techniques on PC. Identification was carried out according to standard methods [9, 10].

REFERENCES

- Harborne, J. B. (1977) in The Biology and Chemistry of the Compositae (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds.) pp. 359, 603. Academic Press, London.
- Rodriguez, E., Carman, N. J., Chavez, P. and Mabry, T. J. (1972) Phytochemistry 11, 1507.
- 3. Urbatsch, L. E., Bacon, J. D. and Mabry, T. J. (1975) Phytochemistry 14, 2279.
- 4. Harborne, J. B., Heywood, V. H. and King, L. (1976) Biochem. Syst. Ecol. 4, 1.
- Bacon, J. D., Urbatsch, L. E., Bragg, L. H., Mabry, T. J., Neuman, P. and Jackson, D. W. (1978) Phytochemistry 17, 1939.
- Schulte, K. E., Rücker, G. and Müller, F. (1968) Arch. Pharm. 301, 115.
- Bowie, J. H. and Cameron, D. W. (1966) Aust. J. Chem. 19, 1627.
- 8. Jay, M. and Voirin, B. (1976) Phytochemistry 15, 517.
- Harborne, J. B. (1967) in Comparative Biochemistry of the Flavonoids. Academic Press, London.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) in *The Systematic Identification of Flavonoids*. Springer, New York.